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”If my soul could get away from this so-called prison, be granted all the list of attributes generally

bestowed on spirits, my first ramble on spirit wings would not be among the volcanoes of the moon.

Nor should I follow the sunbeams to their sources in the sun. I should hover about the beauty of

our own good star. I should not go moping among the tombs, nor around the artificial desolation

of men. I should study Nature’s laws in all their crossings and unions; I should follow magnetic

streams to their source and follow the shores of our magnetic oceans. I should go among the rays

of the aurora, and follow them to their beginnings, and study their dealings and communions with

other powers and expressions of matter. And I should go to the very center of our globe and read

the whole splendid page from the beginning.”

From the diary of John Muir, 18th January 1870
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1 Introduction

Since the earliest investigations into magnetism, it has been observed that magnets are formed of

two poles and any attempt to separate the poles of a magnet results in two magnets, each still

possessing both poles. The statement that an isolated pole of a magnet - a magnetic charge, or

“monopole” - cannot exist without the opposite pole, meaning that magnetic field lines cannot

begin or end at a source or sink, has never been seen to be violated.

However, the theoretical concept of a monopole was considered even before Maxwell’s unification of

electricity and magnetism. Electric charges do exist, with positive and negative charges providing

the sources and sinks of electric field lines. This idea could be carried across to magnetic fields;

in Maxwell’s formulation of classical electromagnetism, there is nothing preventing the addition of

magnetic charges. Doing so introduces the additional symmetry to the theory known as electric-

magnetic duality, which - at least aesthetically - makes the unification of these two forces appear

more natural.

In quantum theory, the situation is more complicated as the addition of monopoles seems to

make the theory inconsistent due to quantum interference effects involving the vector potential.

However, Dirac showed that there is no inconsistency so long as the monopole is restricted to

having an integer multiple of a fundamental unit of magnetic charge that is proportional to the

reciprocal of the electric charge. This not only implies that monopoles can be included without any

need to alter the underlying theory, but also provides an explanation for the observed quantisation

of electric charge. As noted by Dirac, “under these circumstances one would be surprised if Nature

had made no use of it”. In quantum electrodynamics (QED) though the mass of these Dirac

monopoles is found to be infinite; even with the techniques of renormalisation their mass can still

not be made finite. Once again, it seems that there is an obstacle to their existence even in theory.

However, QED is now known not to be the fundamental theory, but it emerges after symmetry

breaking from the electroweak theory, which unifies electromagnetism and the weak nuclear force.

Grand Unified Theories (GUTs) attempt to take the idea of unifying forces further, by combining

all the forces of the Standard Model of particle physics into a single unified theory. ’t Hooft and

Polyakov found that such theories not only allow the existence of magnetic monopoles, but actually

predict them. “Theories of everything”, which include gravity in addition to the other forces, also
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have this property. The mass of ’t Hooft-Polyakov monopoles, unlike Dirac monopoles in QED, is

finite, set by the energy scale of the symmetry breaking.

Despite having never been observed, the theoretical motivations for magnetic monopoles given

above have prompted ongoing experimental searches for monopoles in a number of areas. As such

it is important to understand their theoretical properties. One difficulty that arises is that the

perturbative methods commonly used in performing calculations in quantum field theory are not

appropriate in this case. Lattice gauge theories, on the other hand, provide a non-perturbative

framework for studying gauge theories, formulating them on a discrete spacetime lattice. Further-

more, monopoles are found to exist on the lattice making it an obvious choice in which to study

the monopole’s properties.

Lattice gauge theories have been most widely used in studying the SU(3) theory of the strong

nuclear force, Quantum Chromodynamics (QCD), another area where, at low energies, standard

perturbation techniques are not appropriate. The understanding of confinement in QCD has been

a major success of lattice field theory and monopoles have played a central role in this. Here, the

lattice gauge theory known as compact U(1) will be studied, with the addition of a term in the

action which is intended to reduce the suppression of monopoles and decrease their mass. In the

continuum limit the compact U(1) gauge theory becomes the standard pure gauge form of QED -

that is with only the gauge particle, the photon, and without fermions. By studying the properties

of magnetic monopoles in this simple system, it may be possible to gain insights that also apply

to physical monopoles that could exist in the more complex systems describing the real world.
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2 Magnetic Monopoles

2.1 Magnetic Monopoles in Classical Electromagnetism

Maxwell’s equations for classical electromagnetism can be written in the form1

∇ ·E = ρE

∇ ·B = 0

−∇×E =
∂B

∂t

∇×B =
∂E

∂, t
+ jE

(2.1)

where E and B are the electric and magnetic fields respectively, ρE is the electric charge density

and jE is the electric current density. In the absence of any electric charges, ρE = 0, jE =

0, the equations exhibit the symmetry known as electric-magnetic duality, characterised by the

replacements

E→ B

B→ −E,

(2.2)

which leave the equations invariant. However, the existence of electric charges breaks this sym-

metry, unless we also introduce magnetic charges known as monopoles. With the magnetic charge

density ρM and magnetic current density jM, Maxwell’s equations become

∇ ·E =ρE

∇ ·B =ρM

−∇×E =
∂B

∂t
+ jM

∇×B =
∂E

∂t
+ jE,

(2.3)

where the electric-magnetic duality is restored. The equations are now invariant under the substi-

tutions

E→ B

B→ −E

ρE → ρM

ρM → −ρE

jE → jM

jM → −jE.

(2.4)

1Natural units, where quantities are given in units of the speed of light c, Planck’s constant ~, the permittivity
of free space ε0, and the permeability of free space µ0, i.e. c = ~ = ε0 = µ0 = 1, have been used here and will be
used throughout this report.
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By combining the electric and magnetic fields into a single complex field, E + iB, the symmetry

can be seen to correspond to a rotation in the complex plane. Maxwell’s equations are then

∇ · (E + iB) = ρE + iρM

∇× (E + iB) = i
∂

∂t
(E + iB) + i(jE + ijM)

(2.5)

which are now invariant under any complex rotation

E + iB→ eiθ(E + iB)

ρE + iρM → eiθ(ρE + iρM)

jE + ijM → eiθ(jE + ijM).

(2.6)

This all suggests that magnetic monopoles fit into classical electromagnetism in a very elegant

way, allowing the theory to exhibit the additional symmetry of electric-magnetic duality. It is

worth noting however that when describing the electric and magnetic fields in terms of the scalar

potential φ and vector potential A,

E = −∂A

∂t
−∇φ

B = ∇×A,

(2.7)

it appears no longer possible for magnetic monopoles to exist, since

ρM = ∇ ·B = ∇ · (∇×A) = 0. (2.8)

Nonetheless, this is not an argument for the non-existence of monopoles in classical electromag-

netism. This is because this vector potential is not a physical object; the scalar and vector potentials

are only defined up to a gauge transformation. Since the theory can be formulated entirely without

these potentials, there is no theoretical obstacle to including magnetic charges. The vector poten-

tial does, however, form a fundamental part of the formulation of electromagnetism in quantum

theory. In the next section it will be seen that this still does not preclude their existence; on the

contrary, a large class of quantum field theories in which electromagnetism is embedded are found

to inevitably contain monopole solutions.
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2.2 Magnetic Monopoles in Quantum Field Theory

2.2.1 Dirac Monopoles

Despite the apparent implication of Equation (2.8), it is in fact possible to have a vector potential

that describes a monopole at the expense of the vector potential being singular. The solution by

Dirac [1] can be thought of as the magnetic field produced at the end of an infinitesimally thin

solenoid that extends infinitely far in one dimension, known as a Dirac string. Since the magnetic

field would be confined to within the solenoid except at the end where the magnetic field spreads

out in all directions. The vector potential, in polar coordinates with the end of the Dirac string at

the origin, is given by

A(r) =
g r× n

4πr(r − r · n̂)
, (2.9)

where r = |r|, n̂ is a unit vector pointing out of the end of the solenoid, and g is the magnetic flux

through the solenoid. This potential becomes singular at r = 0, where the direction in undefined,

but is otherwise smooth. The magnetic field described by such a potential exactly matches that

produced by a monopole of charge g

B(r) =
g r

4πr3
. (2.10)

In classical electromagnetism the solenoid itself is entirely unobservable and so the string can be

thought of as being unphysical, leaving only an observable monopole. In quantum theory, however,

charged particles can be affected by the vector potential (even in regions where the magnetic field

is zero) due to the Aharonov-Bohm effect [2], by changing the complex phase of the particle’s

wavefunction. In the case of a Dirac solenoid, the complex phase ϕ of a particle of charge e moving

along a closed loop will change by the amount

∆ϕ = e

∮
A · dr = eΦ. (2.11)

where Φ is the magnetic flux through the loop. This change in the complex phase is observable

through interference effects unless eΦ is equal to an integer multiple of 2π. It would therefore be

possible to have monopoles in quantum theory without an observable Dirac string (and hence the

string could be considered to be unphysical with the monopole being the physical object), so long
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as the electric and magnetic charges are quantised such that

eg

2π
∈ Z. (2.12)

This suggests that the existence of monopoles would explain the observed effect of charge quanti-

sation, providing another - more concrete - theoretical indication for their existence, on top of the

argument for preserving electric-magnetic duality.

The above discussion suggests that monopoles are allowed, and even expected, to exist in the quan-

tum field theory of electromagnetism, quantum electrodynamics. However, there is an additional

problem that is encountered when attempting to include magnetically charged particles; their mass

goes to infinity. This type of divergence is common in quantum field theories and they are known

as “ultraviolet divergences”. The issue arises when, after quantising a field theory in a Lorentz

covariant way, physical quantities such as scattering amplitudes appear to diverge. Full details of

this can be found in [3], but a basic outline of the problem is as follows: Many physical quantities

in quantum field theories (for example scattering amplitudes) involve integrals that are taken over

all energy scales. These integrals are found to diverge due to increasingly large contributions at

high energy scales (or equivalently small length scales) - hence the name “ultraviolet”. The solu-

tion to this problem starts by introducing a regulator to modify the calculations such that they

produce finite results, except in the limit where the regulator disappears and the original quantity

is recovered. Once we have this regularisation in place, the next step is to introduce a renormali-

sation scheme, where the divergences are absorbed into the parameters of the theory. The result

of this is that when taking the limit where the regulator is removed, while these bare parameters

will now diverge, the physical quantities remain finite. However, it is not always possible to use

this procedure to renormalise all the quantities in a quantum field theory. The most well-known

case of a non-renormalisable theory is gravity, and it is for this reason that creating a quantum

theory of gravity has proven so difficult. In the case of QED without magnetic monopoles, the

theory is renormalisable. With the addition of monopoles there is now an additional quantity -

the monopole mass - which needs to be renormalised, but there are no longer enough parameters

to absorb all the infinities; even after renormalisation the monopole mass is still infinite. There

are, however, ways to resolve this. If we treat the theory as an effective theory valid only at low

energies then the high energy “cut-off” will act as a regulator that stops the divergence. As will
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be seen in the next chapter, lattice field theory provides one such regulator, allowing monopoles

to exist in lattice QED.

2.2.2 ’t Hooft-Polyakov Monopoles

Although the monopole mass is found to be infinite when monopoles are included in QED, this is

not the case when the U(1) QED theory emerges as the effective theory at low enough energies

after symmetry breaking from a larger group. In fact, as originally found by ’t Hooft [4] and

Polyakov [5], monopole solutions inevitably exist for all Grand Unified Theories having U(1) QED

emerge as a subgroup of the GUT group. Furthermore, whereas in the case of Dirac monopoles the

vector potential contains a singularity, the monopole solutions for ’t Hooft-Polyakov can be entirely

smooth. This is because the “winding” of the U(1) phase around a loop must discontinuously jump

from, for example, 2π when the loop is around Dirac string to 0 as the loop is moved past the end

of the string, but for the larger group within which the U(1) is embedded, it is possible for this to

be done continuously.

The simplest example consists of breaking the SU(2) symmetry. The Lagrangian density is given

by

L = −1

4
F aµνF

µν a +
1

2
DµΦaDµΦa − V (Φ), (2.13)

where Φa is the Higgs field with a running over 1 to 3, F aµν and Dµ are the SU(2) field strength

tensor and covariant derivative respectively, and the potential V (Φ) is given by

V (Φ) =
1

8
λ(ΦaΦa − v2)2. (2.14)

The vacuum solution has non-zero value for the Higgs field, but only specifies its magnitude as

v, leaving a sphere of degenerate solutions corresponding to the direction of the Higgs field. The

theory’s SU(2) symmetry is therefore spontaneously broken in the vacuum state by the required

choice of this direction; the remaining unbroken symmetry is the U(1) symmetry which can be

identified with the emergence of QED. This vacuum solution allows the direction of the Higgs field

to be chosen arbitrarily, and can vary with position in space. It is therefore possible to imagine

a “hedgehog” solution where the direction of the Higgs field at a point r in space is aligned with

r, i.e Φ(r) = f(r)r̂. This means that at the origin the Higgs field must be zero, f(0) = 0, and

hence this is not exactly the vacuum solution. At every other point the Higgs vector points away
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from the origin. Note that the Higgs field is really a vector in an internal space, but since it is a

three component vector, it is convenient in this case to think of the Higgs field as a vector field in

terms of its position in real space. If we choose the magnitude of the Higgs field to be a smooth

function which is zero at the origin, but quickly tends towards the vacuum expectation value v

away from the origin, then this solution is “almost” a vacuum solution, and at large distances

will appear as such. It will therefore look at large distances as if the SU(2) symmetry is broken

with the U(1) QED emerging. However, close to the origin the solution deviates from the vacuum,

suggesting a localised packet of energy, i.e. a particle. We identify this particle as a monopole as

it turns out that this solution gives a magnetic field around the origin that has the exact form

of a magnetic monopole, with charge consistent with the quantisation from Dirac monopoles. In

this case the charge is found to be twice the minimum non-zero magnetic charge allowed, however

different GUTs have solutions with the other values allowed by the quantisation condition (2.12).

Due to their topology, solutions of this type cannot be continuously transformed into the vacuum

solution, and are a type of “topological defect”. This also means that they are stable solutions

and so ’t Hooft-Polyakov monopoles are stable particles. In fact, it has been shown that such

topologically non-trivial solutions exist in all theories where a gauge symmetry based on a simple

Lie group is broken via the Higgs mechanism leaving a U(1) gauge symmetry, including all GUTs.

Unlike the Dirac monopole solutions in QED, the mass of ’t Hooft-Polyakov monopoles is actually

finite, with the mass scale close to the scale of the GUT at which the symmetry breaking occurs.

For GUTs that aim to unify the forces of the Standard Model, this is of the order ∼ 1016 GeV,

and monopoles are expected to have a mass around 1017 − 1018 GeV [6]. This is far beyond the

mass of any particles that could be observed in collider experiments, for example, but this does

not preclude the existence of monopoles of lighter mass, which could be observed in accelerator

experiments. Monopoles of a mass beyond the reach of such experiments, could still have been

created during the very hot early stages of the universe. If this was the case, then since they are

stable particles we would expect that they would still exist in the universe. In fact, estimates of

what the monopole density should be today predict a very large number of monopoles, which is not

observed to be the case [7]. This problem lead to the suggestion of cosmological inflation [8], which

has proven to be a highly successful theoretical concept, providing explanations for a number of

other cosmological problems. As such, this suggests that monopoles could still exist as physical

particles, and searches for experimental evidence of their existence have been carried out in a

number of areas.
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2.3 Searches for Monopoles in the Physical World

Despite the strong theoretical arguments for their existence, there has so far been no experimental

evidence of magnetic monopoles. This is despite efforts to directly observe monopoles in cosmic

rays, bound in matter, or produced in accelerators, and to indirectly observe their presence through

their influence on astrophysical processes. The failure of these searches to find monopoles or observe

their effects provides physical bounds on the properties of monopoles that could exist. For a more

detailed discussion of this area see [6, 9]. The main techniques and results are summarised as

follows; references for all of these can found in [6].

The induction method, used in searches for monopoles directly in cosmic rays, matter which has

absorbed cosmic rays over long time periods, or matter removed from collider experiments, consists

of identifying magnetic charges by the current that would be induced by the charge passing through

a superconducting ring. Another method for measuring monopoles from cosmic rays or in colliders

is to measure the tracks of the particles, where the electromagnetic energy loss of magnetically

charged particles with the lowest allowed magnetic charge would be much larger than that of

electrically charged particles with the lowest electric charge. In colliders, searches for monopoles

have also been carried out by looking for their characteristic path in a magnetic field, distinct from

the usual helical path of an electrically charged particle.

Searches have been attempted to find monopoles bound in matter exposed to cosmic rays over

millions of years, using moon rock, meteorites and sea water; with no monopoles found in these

attempts this gives an upper bound of ∼ 10−29 monopoles per nucleon. Searching for monopoles di-

rectly in cosmic rays has also been attempted, but again with no confirmed monopole observations.

Bounds on the monopole flux from various experiments of this type are given in Figure 1. Although

GUT monopoles are well out of reach of collider experiments due to their mass, it is possible that

monopoles could exist with a lower mass but above the electroweak scale of around 100 GeV.

Searches at colliders have so far excluded monopoles of mass less than around ∼ 1 TeV. The most

significant limits coming from the ATLAS experiment. A new experiment, MoEDAL, has recently

been deployed at the Large Hadron Collider with the main aim to search for magnetic monopoles.

Figure 2 shows a summary of the bounds placed on monopole production cross sections, from a

number of collider experiments with collisions at different centre of mass energies. Indirectly detect-

ing the existence of higher mass monopoles through the effects of virtual monopole-antimonopole

pairs in high energy interactions at colliders has also been attempted, but the theoretical cal-
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culations used in these analyses are less reliable, giving more uncertain results than from direct

searches.
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Figure 1: Upper flux limits for (a) GUT
monopoles as a function of β (b) Monopoles
as a function of mass for β > 0.05.

Searches via the Catalysis of Nucleon-Decay: Searches

have been performed for evidence of the catalysed decay of a

nucleon by a monopole, as predicted by the Callan-Rubakov

mechanism. The searches are thus sensitive to the assumed

value of the catalysis decay cross section. Searches have been

made with the Soudan [38] and Macro [39] experiments, using

tracking detectors. Searches at IMB [40] and the underwater

Lake Baikal experiment [41] which exploit the Cerenkov effect

have also been made. The resulting β-dependent flux limits

from these experiments typically vary between ∼ 10−16 and

∼ 10−14cm−2sr−1s−1 [25]. A recent search for low energy neu-

trinos (assumed to be produced from induced proton decay in

the sun) was made at Super-Kamiokande [42]. A β-dependent

of limit of 6.3× 10−24(
β

10−3
)2cm−2sr−1s−1 was obtained.

Searches at Colliders: Searches have been performed at

hadron-hadron, electron-positron and lepton-hadron experi-

ments. Collider searches can be broadly classed as being direct

or indirect. In a direct search, evidence of the passage of a

monopole through material, such as a charged particle track,

is sought. In indirect searches, virtual monopole processes are

assumed to influence the production rates of certain final states.

Direct Searches at Colliders: Collider experiments typically

express their results in terms of upper limits on a production

August 21, 2014 13:18

Figure 1: Upper bounds on the flux of GUT monopoles as a function of their speed β and of the
flux of monopoles as a function of their mass for β > 0.05 [6].
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cross section and/or monopole mass. To calculate these lim-

its, ansatzes are used to model the kinematics of monopole-

antimonopole pair production processes since perturbative field

theory cannot be used to calculate the rate and kinematic

properties of produced monopoles. Limits therefore suffer from

a degree of model-dependence, implying that a comparison be-

tween the results of different experiments can be problematic,

in particular when this concerns excluded mass regions. A con-

servative approach with as little model-dependence as possible

is thus to present the upper cross-section limits as a function of

one half the centre-of-mass energy of the collisions, as shown in

Fig. 2 for recent results from high energy colliders.
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Figure 2: Upper limits on the production
cross sections of monopoles from various collider-
based experiments.

Searches for monopoles produced at the highest available

energies in hadron-hadron collisions were made in pp collisions

at the LHC by the ATLAS experiment [43]. In this search,

highly ionising particles leaving characteristic energy deposition

profiles were sought. Tevatron searches have also been carried

August 21, 2014 13:18

Figure 2: Upper bounds placed on monopole production cross sections for various centre of mass
collision energies [6].

It is also possible to probe the existence of monopoles by looking for indirect evidence from their

expected effect on various physical processes. One such process is nucleon decay; it is possible that

GUT monopoles could catalyse the decay of the proton due to the GUT’s symmetry being unbroken

within the monopole removing the potential barrier which would otherwise exist for the decay. A

recent result from an experiment of this type was from Super-Kamiokande which placed an upper

bound on the monopole flux of 6.3 × 10−24
(

β

10−3

)2

cm−2sr−1s−1, where β is the speed of the

monopole. Another bound, known as the Parker bound, can be placed on the flux of monopoles by

considering that they would be expected to drain energy from magnetic fields of galaxies or clusters

of galaxies. Given the size of the magnetic fields observed, the requirement that the monopole flux
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drains energy from the magnetic field slowly compared to the rate at which it can be regenerated

gives the upper bound on the flux as 10−15cm−2sr−1s−1 for monopoles of mass less then ∼ 1017

GeV, where their motion is not dominated by gravitational forces. A similar bound can also

be obtained by considering the total mass of monopoles in the universe. Monopoles could form

the observed dark matter of the universe, and from the dark matter density the upper bound, for

monopoles of mass M with average speed v, is found to be 1.3×10−17
1017GeV

M

v

10−3c
cm−2sr−1s−1.
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3 Lattice Field Theory

3.1 The Motivation for Lattice Field Theory

There are a number of reasons for the interest that has arisen over the past few decades in Lattice

field theories - the formulation of quantum field theories on a discrete spacetime lattice. The

concept was originally proposed by Wegner as a locally gauge invariant generalisation of the Ising

model [10], however it was Wilson’s formulation, introduced in investigations into confinement [11],

that laid the foundations for the lattice field theories of gauge theories that have been investigated

since. In Wilson’s paper the lattice gauge theory is used as a method of regularisation; a step in

the solution to the problem of ultraviolet divergences previously discussed in Section 2.2.1.

There are various different techniques used for both regularisation and renormalisation. Examples

of methods for regularisation include taking a high energy cut-off, Λ, recovering the original theory

as Λ→∞, or taking the spacetime to be of dimension d = 4−ε, with the original theory recovered

as ε → 0. Lattice field theory was introduced as an alternative method for regularisation where

calculations are instead regularised by introducing a minimum length scale. This is achieved by

formulating the quantum theory on a discrete lattice in spacetime, with the physical theory being

recovered in the limit where the lattice spacing between two spacetime points is taken to zero.

This was the original motivation for formulating quantum field theories on a lattice, yet there

are also advantages to using lattices over other techniques. Quantities in quantum field theory

are usually calculated using perturbation theory; a series of Feynman diagrams are computed,

expanding in powers of the coupling constant. This works well, and has been very successfully used

in predicting physical quantities, for cases where the coupling constant is small such as quantum

electrodynamics, and quantum chromodynamics (QCD) at high energies. It is less suited, however,

to theories with large coupling constants like QCD at low energies. Calculations on a lattice provide

a way to produce genuinely non-perturbative results; indeed, significant advances in understanding

aspects of QCD have emerged from research in lattice QCD. In the case of studying monopoles, the

Dirac quantisation condition (2.12) results in a magnetic coupling constant which is large precisely

when the electric coupling constant is small. Furthermore the topological nature of the monopole

solution means that it is not just a perturbation of the vacuum. This make it difficult to study

perturbatively, and so non-perturbative methods such as lattice field theory is required. From a

purely practical point of view, lattice field theory also has the advantage that the discreteness
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of the lattice spacetime lends itself well to performing computations; as will be seen later, the

calculations in lattice field theory bear a striking resemblance to those in statistical mechanics,

allowing the computational techniques developed for calculations in that field to also be used for

calculations in lattice field theory. Finally, for gauge theories there is the appeal that the lattice

gauge theory retains manifest gauge invariance, whereas other methods generally require gauge

fixing until the gauge invariance is recovered after renormalisation.

3.2 Quantum Path Integrals

The path integral formulation of quantum field theory is the one that is of most interest for lattice

field theory. This will be briefly reviewed in this section, first as applied to a simple quantum

mechanical system with one degree of freedom, and then to scalar fields. Full details can be found

in [3].

3.2.1 Path Integrals in Quantum Mechanics

Consider a quantum system with a single degree of freedom, described by the Hamiltonian operator

Ĥ = H[q̂, p̂] =
p̂2

2m
+ V (q̂). (3.1)

In natural units, the time evolution of the system is described by the operator

Û(T ) = e−iT Ĥ . (3.2)

The amplitude for a particle to travel from point qa to qb in time T , can be represented as the

path integral

〈qb| Û(T ) |qa〉 =

∫ qb(x)

qa(x)

Dq(t) eiS[q(t)], (3.3)

where
∫ qb(x)
qa(x)

Dq(t) represents a functional integral over all functions q(t) (i.e. all paths) where

q(0) = qa and q(T ) = qb, and S[q(t)] is the action of the system,

S[q(t)] =

∫
dtL[q(t), q̇(t)], (3.4)
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where L is the Lagrangian corresponding to the Hamiltonian H. To define the path integration

measure Dq(t), we consider splitting the time interval T into N smaller intervals ε. By making

the replacement Û(T ) = Û(ε)N , inserting a complete set of states 1 =
∫
dqk |qk〉 〈qk| between each

Û(ε), and taking the limit N →∞, ε→ 0, this gives

∫
Dq(t) =

√
m

2πiε

N∏
k=0

√
m

2πiε

∫
dqk. (3.5)

3.2.2 Scalar Field Theory

This path integral formulation generalises in a straightforward way to scalar field theory. We now

have the Hamiltonian

Ĥ =

∫
d4x

1

2
π̂2 +

1

2

(
dφ̂

dx

)2

+ V (φ̂)

 , (3.6)

with the amplitude from field φa(x) to φb(x) in time T is given by

〈φb| Û(T ) |φa〉 =

∫
Dφ(x) eiS[φ(x)], (3.7)

where the functional integral
∫
Dφ(x) is now over all Minkowski spacetime functions φ(x) satisfying

φ(0,x) = φa(x) and φ(T,x) = φb(x), and the action is now given by S =
∫
d4xL where L is the

Lagrangian density

L =
1

2
∂µφ∂

νφ− V (φ). (3.8)

Repeating a similar procedure that derives the path integral (3.7), time ordered n-point functions

are found to be given by

〈φb|T φ̂(xµ1

1 )φ̂(xµ2

2 ) . . . φ̂(xµnn ) |φa〉 =

∫
Dφ(x) eiSφ(xµ1

1 )φ(xµ2

2 ) . . . φ(xµnn ). (3.9)

By considering then the time evolution of a state |φ〉 at time −T , for T → (1− iε)T and T →∞,

and decomposing |φ〉 into energy eigenstates |n〉 satisfying Ĥ |n〉 = En |n〉, and rearranging to get

an expression for |0〉, the vacuum expectation value ˆ〈O〉 of an operator Ô[φ] is found to be

〈0|T Ô[φ̂] |0〉 = lim
T→∞

e2εE0T

〈φb|0〉 〈0|φa〉

∫
Dφ(x) eiSO[φ]. (3.10)
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Then, since this is true also for the identity, 1, we have

1 = 〈0|0〉 =

∫
Dφ(x) eiS , (3.11)

and so

〈0|T Ô[φ̂] |0〉 =

∫
Dφ(x) eiSO[φ]∫
Dφ(x) eiS

. (3.12)

It is worth noting here that if time is rotated to the imaginary axis via a Wick rotation,

t→ it, (3.13)

so that we are working in Euclidean space, these integrals then become real, bounded, and more

convenient to work with. In most cases the results produced will still stand, while in other cases a

rotation back to real time can be performed to obtain the correct value. After the rotation (3.13),

Equations (3.12) and (3.11) become

〈0|0〉 =

∫
Dφ(x) e−S (3.14)

〈0|T Ô[φ̂] |0〉 =

∫
Dφ(x) e−SO[φ]∫
Dφ(x) e−S

, (3.15)

where S now refers to the Euclidean action

S[φ(x)] =

∫
d4x

[
1

2
(∂0φ)2 +

1

2
(∂iφ)2 + V (φ)

]
. (3.16)

In this form, the analogy with statistical mechanics is clear. Equation (3.14) has the form of the

partition function and Equation (3.15) has the form of an observable in a statistical mechanical

system. This demonstrates how the techniques of statistical mechanics can be applied to problems

in quantum field theories; in particular the computational methods can be used with lattice field

theory.
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3.2.3 Gauge Theories

The theories that appear to describe the physical world exhibit local gauge invariance; the action

S[ψ(x), ψ̄(x)] is invariant under the local gauge transformation

ψ(x)→ ψ′(x) =G(x)ψ(x)

ψ̄(x)→ ψ̄′(x) =ψ̄(x)G−1(x),

(3.17)

where G(x) is an element of the gauge group G which varies in spacetime. Here the field ψ(x)

transforms under some representation of G and ψ̄(x) transforms in the conjugate representation to

ψ(x).

To construct such a theory, the gauge fields Aµ(x) = Aaµt
a are introduced, where ta are the

generators of G satisfying [ta, tb] = ifabctc for the group’s structure constants fabc. The gauge

fields transform in the adjoint representation of G as

Aµ(x)→ A′µ(x) = G(x)Aµ(x)G−1(x) +
i

g
G(x)∂µG

−1(x), (3.18)

This gauge field is used in the covariant derivative Dµ of ψ, which replaces the usual derivative ∂µ

due to objects such as ∂µψ(x) not being gauge invariant,

Dµψ = (∂µ + igAµ)ψ. (3.19)

The field strength tensor is also introduced as

Fµν(x) = ∂µAν(x)− ∂νAµ(x) + ig[Aµ(x), Aν(x)], (3.20)

or, in terms of components,

F aµν(x) = ∂µA
a
ν(x)− ∂νAaµ(x) + igfabcAbµ(x)Acν(x). (3.21)

We are now in a position to construct a number of gauge invariant terms for the action. For

example, the QCD action with the gauge group SU(3) is given by S[ψ, ψ̄, Aµ] =
∫
d4xL[ψ, ψ̄, Aµ]
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with Lagrangian density

L[ψ, ψ̄, Aµ] = −1

2
Tr[FµνF

µν ] + ψ̄(iγµDµ −m)ψ. (3.22)

In fact, the Yang-Mills term Tr[FµνF
µν ] alone is a gauge invariant object, and so it is possible to

construct a pure gauge field theory comprising only of the gauge field Aµ.

As with the scalar theory, expectation values of observables can be calculated using path integrals.

After performing the rotation to imaginary time as before, the expression for these observables is

〈0|T Ô[Âµ, ψ̂,
ˆ̄ψ] |0〉 =

∫
Dψ(x)Dψ̄(x)DAµ(x) e−SO[Aµ, ψ, ψ̄]∫

Dψ(x)Dψ̄(x)DAµ(x) e−S
. (3.23)

Our gauge invariant path integral is now also over the group-valued gauge field Aµ(x). To obtain a

proper meaning for the full integration measure for these gauge theories, DψDψ̄DAµ, or for scalar

field theories, Dφ, lattice regularisation will need to be introduced.

3.3 Lattice Regularisation

In Section 3.2.1 it was seen that for the path integral of a quantum mechanical system (3.3) with

a single degree of freedom, it was necessary to split time into a finite number of discrete slices in

order to formally define the integration measure (3.5). For a quantum field theory such as the

scalar theory described in Section 3.2.2, or the gauge theories described in Section 3.2.3, we again

give well-defined mathematical meaning to the path integrals by discretisation; here though the

whole of spacetime is discretised onto a lattice. This process is called lattice regularisation and

results in a lattice field theory.

The lattice regularisation takes place after the Wick rotation (3.13), so that we have a Euclidean

spacetime and use the Euclidean form of the theory’s action, given by Equation (3.16) for the scalar

theory. The continuum of spacetime xµ is replaced by a finite lattice of points separated by the

lattice spacing a, withN =
L

a
points in each direction, such that xµ = anµ for nµ = 0, 1, . . . , N = 1.

The field is now only defined at these points, φ(x) → φx, and derivatives are replaced by finite

differences

∂µφ(x)→ ∂µφx ≡
1

a
(φx+aµ̂ − φx). (3.24)
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Spacetime integrals are then replaced with sums

∫
d4x→ a4

N−1∑
n0=0

· · ·
N−1∑
n3=0

≡ a4
∑
x

, (3.25)

and the path integral then becomes a usual multiple integral

∫
Dφ(x)→

N−1∏
n0=0

· · ·
N−1∏
n3=0

(∫ ∞
−∞

dφx

)
≡
∏
x

(∫ ∞
−∞

dφx

)
. (3.26)

This is already enough to construct a lattice field theory and start to perform calculations. The

partition function is given by

Z =

∫ ∏
x

dφx e
−S[φ], (3.27)

where the discretised action is given by

S[φ] = a4
∑
x

[
1

2
(∂0φ)2 +

1

2
(∂iφ)2 + V (φ)

]
. (3.28)

Physical observables can then be calculated as

ˆ〈O〉 =
1

Z

∫ ∏
x

dφxO[φ] e−S[φ]. (3.29)

Finally, to recover the original continuum theory, the limits N →∞, a→ 0 must be taken. While

computations can only be performed on a finite lattice, many properties of the lattice theory are

expected to continue into the continuum theory. As such, lattice field theories provide a convenient

tool to investigate the corresponding continuum theories.

The theory described above describes the lattice formulation of a scalar field theory, but it is gauge

theories that have been enormously successful in describing the particle physics observed in the

real world, and these are the theories where studying the lattice formulations have provided real

insights into understanding aspects of the theories that are otherwise inaccessible.

3.4 Formulation of Gauge Theories on a Lattice

In order to see how the gauge theories of Section 3.2.3 can be formulated on a spacetime lattice - in

particular how the lattice equivalents of spacetime derivatives (3.24) can be replaced with suitable
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covariant derivatives - it is useful to introduce the transport operator. This operator, as applied

to a field at a point x parallel transports the field to the point x+ dx, and takes the form

eigAµdx
µ

. (3.30)

This is the geometrical reason for the above form of the covariant derivative (3.19), since

∂µ

(
eigAνdx

ν

ψ(x)
)

= ∂µ
(
ψ(x) + igAνdx

νψ(x) +O((dxν)2)
)

= ∂µψ(x) + igAµψ(x) +O(dxν)

= Dµψ(x) +O(dxν),

(3.31)

and so the derivative of the field at x+ dxν - equal to the derivative of the field at x transported

along the infinitesimal distance dxν - is equal to the covariant derivative of the field at x. The

transport operator transforms under the gauge transformation (3.17) as

eigAµdx
µ → G(x)eigAµdx

µ

G−1(x+ dx), (3.32)

so that the products of fields at different points can be made gauge invariant

ψ̄(x)eigAµdx
µ

ψ(x+ dx)

→ ψ̄(x)G−1(x)G(x)eigAµdx
µ

G−1(x+ dx)G(x+ dx)ψ(x+ dx)

= ψ̄(x)eigAµdx
µ

ψ(x+ dx).

(3.33)

On the lattice, we have the gauge transformations

ψx → Gxψx

ψ̄x → ψ̄xG
−1
x .

(3.34)

The gauge field on the lattice can therefore be represented by a discretised version of the transport

operator, given by the link variables, Ux,x+µ̂ ∈ G, between two neighbouring points on the lattice,

x and x+ aµ̂, where we use the notation

Uµ,x = Ux,x+µ̂

U−1µ,x = Ux+µ̂,x.

(3.35)
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These are related to the continuum gauge field by

Uµ,x = eigαµ,x , (3.36)

where αµ,x is the discrete replacement for the gauge field, Aµ(x)→ 1

a
αµ,x. As required, the links

transform under a gauge transformation as

Uµ,x = GxUµ,xG
−1
x+µ̂. (3.37)

The covariant derivative is then replaced with the discretised version

Dµψ(x)→ Dµψx =
1

a
(Uµ,xψx+aµ̂ − ψx). (3.38)

The transport operator above can also be used to define the parallel transport along a path γ from

pont x1 to x2

Uγ = P eig
∫
γ
Aµdx

µ

, (3.39)

which will transform as

Uγ → U ′γ = G(x1)UγG
−1(x2). (3.40)

For a closed loop λ, starting and finishing at point x, this becomes

Uλ → U ′λ = G(x)UγG
−1(x), (3.41)

and so gauge invariant objects known as Wilson loops can be created from the trace of Uλ. In fact,

the field strength tensor can be seen to be such an object; geometrically it represents the parallel

transport around the infinitesimal square with edges, dxµ and dxν , given by

eigFµνdx
µdxν . (3.42)

The discrete form of this is therefore the ordered product of the links around a square of unit one,

known as a plaquette, giving the gauge invariant plaquette transport operator

Uµν,x = Uµ,xUν,x+µ̂U
−1
µ,x+ν̂U

−1
ν,x . (3.43)
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As the continuum limit is approached, combining the exponentials in the link variables for small

a using the Baker-Campbell-Hausdorff formula, this becomes

Uµν,x = eiga
2Fµν,x+O(a3). (3.44)

where we have used the discretised form of the field tensor, which after replacing the usual deriva-

tives with finite differences has the form

Fµν(x)→ Fµν,x =
1

a2
(αν,x+µ̂ − αν,x − αµ,x+ν̂ + αµ,x). (3.45)

Using these gauge invariant objects it is now possible to construct the action for a lattice gauge

theory. However, a given continuum action will not generally specify a unique action for the lattice

theory; there will be a large class of possible actions with the same continuum limit.

If we have Yang-Mills theory, with Lagrangian density

L =
1

4
F aµνF

µν a, (3.46)

then one possibility for the action is Wilson’s action

S[Uµν,x] =
∑
x

∑
µ<ν

β

N
(1− Re[TrUµν,x]), (3.47)

where β is a numerical constant proportional to
1

g2
which depends on the normalisation convention

used for the group G. From now on we will work only with these pure gauge theories due to

difficulties that arise when dealing with fermions on the lattice2.

For G = SU(N) or G = U(1), with β =
2N

g2
or β =

1

g2
respectively, expanding the exponential in

Equation (3.44) for small a, the action becomes

S[Uµν,x] =
a4

4

∑
x

F aµν,xF
µν a
x +O(a2), (3.48)

giving the correct continuum limit (3.46).

2For a discussion of these problems and how to deal with them, see [12].
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The expressions for the partition function and observables now become

Z =

∫
dU e−S[U ] (3.49)

ˆ〈O〉 =
1

Z

∫
dU O[U ]e−S[U ], (3.50)

where

dU =
∏
x

∏
µ

dUµ,x. (3.51)

This integration measure is the unique gauge invariant measure over the entire group manifold, and

for compact groups this is finite due to the finite group volume and so the integral for the partition

function (3.49) is well defined. In any case, the factor obtained due to the group’s volume will

cancel in the expression for observables (3.50) due to the partition function in the denominator.

In principle, for the well-defined integrals of a compact group, calculations of these quantities could

be computed by brute force, performing a multi-dimensional numerical integration over the entire

configuration space. But to do this in practice would take an intractable amount of time due to

the sheer number of different field configurations on a lattice of any reasonable size. This is where

the Monte-Carlo techniques developed for statistical mechanics become invaluable, and will be

discussed in more detail in Chapter 4.

3.5 Compact U(1) Lattice Gauge Theory

The particular theory that will be investigated here is the pure compact U(1) lattice gauge theory.

Taking G = U(1), Wilson’s action (3.47) reduces to

S[θµν,x] = β
∑
µ<ν

∑
x

[1− cos(θµν,x)] , (3.52)

where β =
1

e2
and we take as our dynamical parameters the plaquette flux angles θµν,x ∈ [−4π, 4π],

defined as

Uµν,x = eiθµν (3.53)

θµν,x = ea2Fµν,x = θµ,x + θν,x+µ̂ − θµ,x+ν̂ − θν,x, (3.54)
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for link angles θµ,x ∈ [−π, π], which differ from the αµ,x introduced in Equation (3.35) only by

a factor of the coupling constant g, which has been absorbed into the link angles and plaquette

angles for convenience. The gauge transformations of the theory take the form

Gx = eiωx , (3.55)

and so the link angles transform as

θµ,x → θ′µ,x = θµ,x + ωx+µ̂ − ωx mod 2π. (3.56)

In the action (3.52) the defining representation of U(1) has been used, and the theory is known

as compact U(1). We can also sum over the other representations ρr of U(1) in the action as a

Fourier series

S[θµν,x] =
∑
r

βr
∑
µ<ν

∑
x

cos(rθµν,x) + constant, (3.57)

giving, for example, the extended Wilson action

S[θµν, x] =
∑
µ<ν

∑
x

[β cos(θµν,x) + γ cos(2Pµν,x)] , (3.58)

or we could have chosen the Villain action

S[θµν,x] =
∑
µ<ν

∑
x

− ln

∞∑
k=−∞

e−
β
2 (θµν,x+2πk)2 . (3.59)

These are again actions for compact U(1), however it is also possible to have a non-compact U(1)

lattice gauge theory; appropriate choices of the values of βr produce the action

S[θµν,x] = β
∑
µ<ν

∑
x

θµν,x. (3.60)

where the gauge transformations no longer involve the mod 2π in Equation (3.56), and the group

is really G = R.

It is the compact form of the theory that we will be using, since compact U(1) contains monopoles

while non-compact U(1) does not.
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3.5.1 Monopoles in Compact U(1)

We will be using the definition of a magnetic monopole on a lattice introduced in [13]. To find

magnetic charges on the lattice the magnetic flux out of a cube is determined, giving the magnetic

charge within the cube via Gauss’s Law. The magnetic field in the lattice is related to the plaquettes

as

Bi =
1

2
εijkθjk,x. (3.61)

However, the physical part of these plaquettes is really the plaquette mod 2π. We therefore define

the physical flux, θ̄µν ∈ [−π, π] as

θ̄µν,x = θµν + 2πnµν,x, (3.62)

where nµν ∈ {0,±1,±2} corresponds to the number of Dirac strings passing through the plaquette.

This is because a Dirac string causes the value of the gauge field to wind once around 2π, as

described in Section 2.2.1, and this corresponds to the plaquette angle also winding round 2π. The

lattice monopole number within a surface, equivalent to ∇ ·B in the continuum, is therefore given

as

2πMx =
∑
boxes

∇iεijkθ̄jk,x (3.63)

=
∑
boxes

εijk(θ̄jk,x+ı̂ − θ̄jk,x) (3.64)

= 2π
∑
boxes

εijk(njk,x+ı̂ − njk,x). (3.65)

In four dimensions, this corresponds to the monopole’s flux through the time dimension, with

the point-like charges in 3-dimensions becoming 1-d strings in 4 dimensions, corresponding to the

worldlines of monopoles. We can therefore define the monopole flux as

Mρ,x =
1

2π
ερσµν∇σ θ̄µν,x (3.66)

=
1

2π
ερσµν(θ̄µν,x+σ̂ − θ̄µν,x) (3.67)

= ερσµν(nµν,x+σ̂ − nµν,x). (3.68)

Due to the quantisation of magnetic charge, the monopole number and flux are expected to be

integers, and this is seen explicitly with the form in Equation (3.68). Due to the lattice regular-
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isation, the mass of these monopoles remains finite, and we find that they do exist in the lattice

simulations. The worldlines delineated by this flux form closed loops due to magnetic charge con-

servation, ∇µMµ = 0 (except in the case where the total magnetic charge in the lattice is forced to

be non-zero by an appropriate choice of boundary conditions, as will be discussed in Section 4.3.2).

Since standard QED does not contain monopoles, it is expected that as the continuum limit of the

lattice theory is taken these monopoles will disappear. Indeed, this does happen and as the lattice

spacing is increased the monopoles become suppressed as their mass effectively goes to infinity,

exactly as expected. However, compact QED without monopoles has been studied on finite lattices

by suppressing them via the action [14]; by adding a term to the action proportional to |Mµ|,

S[θµν,x] =
∑
x

(
β
∑
µ<ν

θµν,x + λ
∑
µ

|Mµ,x|
)
, (3.69)

and taking its coefficient λ to infinity, any lattice configurations which contain monopoles will

be given a zero weighting in the path integral. The theory has also been studied with finite λ,

but again usually to suppress monopoles [15]. However, if the value of λ is taken to be negative,

monopoles are enhanced rather than suppressed, and so this term could provide a way to keep the

monopole mass small even as the lattice spacing is reduced as the continuum limit is taken. For

this reason, we have chosen this action to investigate the monopole’s properties on the lattice.

3.5.2 Confinement and the Phase Structure of Compact U(1)

One of the great successes of lattice gauge theories has been in understanding the phenomenon of

confinement. It was this subject that was addressed by Wilson’s paper which laid the foundations

of lattice gauge theories [11]. The monopoles in lattice gauge theories turn out to be fundamental to

the mechanism known as “dual superconductivity”, proposed by Mandelstam [16] and ’t Hooft [17],

which attempts to explain confinement via electric-magnetic duality as a dual Meissner effect. For

full details on this topic see [18], but a brief outline is as follows. If a phase exists where a condensate

of monopoles form, then they can act in analogy to the Cooper pairs of superconductivity. The dual

Meissner effect then attempts to eliminate the electric charge, and this is achieved by restricting the

charged particles and anti-particles to as small a space as possible, with a thin flux tube between

them. If the particles are separated, the flux tube extends between them, remaining thin, and so

the energy increases linearly with the distance, as is the case in confinement. For QCD, where
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confinement is observed in the physical world, it is the colour charge that is excluded by the dual

Meissner effect, and quarks that are confined.

While confinement in the physical world is only observed in QCD, the compact U(1) lattice gauge

theory does also exhibit a confinement phase [13] for β > βc. This phase is characterised by the

formation of a monopole condensate and the electric field is confined by the dual superconductivity

mechanism [19]. For the Wilson action (3.52) the phase transition is at a critical value of around

βc = 1.01 and for the action with the monopole included, the critical value of β is found to

decrease as λ is increased, due to the suppression of monopoles [15]. The transition was also found

to change from being of second order at large enough λ and becomes first order with smaller λ,

with the energy barrier between the two phases increasing as λ is decreased [29]. When λ is taken

to infinity, the confined phase disappears altogether [14]. We will be attempting to investigate the

properties of monopoles in the Coulomb phase β > βc, but with negative values of λ to the reduce

the monopole mass.
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4 Numerical Simulations

4.1 Monte Carlo Methods

To measure the expectation value of an observable (3.50), we need some way of computing the

multiple integrals. For discrete groups these integrals simply correspond to a finite sum over

the group elements, and for continuous groups the integrals can be approximated by sums over

a sufficiently dense set of points in the group manifold. For a lattice of side L, there are 4L4

link variables being integrated over, so if we attempted to compute such a sum with N possible

values for each link variable, then we would have in total N4L4

terms. Even for the smallest non-

trivial group, Z2 on a modest lattice with L = 8 this is more than 104932 terms; clearly this is not

practical. However, due to the analogy with statistical mechanics noted at the end of Section 3.2.2,

the methods developed for statistical mechanics can be used to reduce this sum to a manageable

calculation.

Each term in this sum corresponds to a configuration Un which is weighted by the factor e−S[Un]

〈O〉 =
1

Z

∑
n

O[Un]e−S[Un]. (4.1)

This weighting results in only a small subset of configurations providing any significant contribution

to the expectation value (3.50). Taking a randomly selected ensemble of configurations, where the

probability, Pn, of selecting a configuration, Un, is proportional to its weight,

Pn = Ce−S[Un] (4.2)

then the mean of the observable over this ensemble will converge towards the exact result

lim
N→∞

1

N

N∑
n=1

O[Un] =

∑
nO[Un]Pn∑

n Pn

=
C
∑
nO[Un]e−S[Un]

C
∑
n e
−S[Un]

=
1

Z

∑
n

O[Un]e−S[Un].

(4.3)

By using a method to efficiently pick ensembles from this probability distribution, the configura-

tions which contribute most to the result will be included much more quickly than picking randomly
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from a uniform distribution or simply summing over all configurations, and so the computation

will converge within a reasonable time.

4.2 The Metropolis Algorithm

The method that will be used to select configurations with probability proportional to their weights

is known as the Metropolis algorithm [20], a form of Markov chain Monte Carlo. This type of algo-

rithm works by taking some initial configuration, U1, then repeatedly selecting new configurations

from a probability distribution dependant on the previous, P (Un → Un+1). Then, the equilibrium

distribution of this Markov chain will equal e−S[U ] if P (Un → Un+1) satisfies

P (Un → Un+1)

P (Un+1 → Un)
=
e−S[Un+1]

e−S[Un]
. (4.4)

The Metropolis algorithm starts with U1, and repeats the following steps

1. A proposed new configuration Up is chosen from the current configuration Un by a random

process with probability Pproposal(Un → Up) which satisfies the condition

Pproposal(Un → Up) = Pproposal(Up → Un). (4.5)

2. The acceptance probability is calculated as

Pacceptance(Un → Up) = min
(

1, eS[Un]−S[Up]
)
. (4.6)

3. The next configuration Un+1 is chosen to be either the proposed configuration or current

configuration, with probability Pacceptance or 1− Pacceptance respectively.

The exact form of the proposal distribution Pproposal(Un → Up) is not explicitly specified by the

method, but can be any distribution which satisfies the condition (4.5). Given that, then the

condition (4.4) is also satisfied, since for

P (Un+1 → Un) = Pproposal(Un → Un+1)Pacceptance(Un → Un+1), (4.7)
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we have

P (Un → Un+1)

P (Un+1 → Un)
=
Pproposal(Un → Un+1)

Pproposal(Un+1 → Un)
eS[Un]−S[Un+1] =

e−S[Un+1]

e−S[Un]
. (4.8)

There will clearly be some level of autocorrelation - the correlation between subsequent configu-

rations Un and Un+1 - and so to use this algorithm effectively, sufficiently many iterations should

be completed before selecting the first configuration for the ensemble, and again sufficiently many

iterations should be completed between each subsequent selected configuration for the ensemble.

In each case, the number of iterations that this should be depends on the autocorrelation, which

will vary depending on the system that is being simulated.

4.2.1 Estimating Errors

Due to the correlation between elements in the selected sample of configurations, and measurements

of observables performed on those configurations, the usual method for estimating the error in the

measurements as their standard deviation divided by
√
N will not be correct. Instead, a method

known as bootstrapping allows the errors to be estimated correctly even when the configurations

in the sample are not independent [21].

The procedure for this consists of randomly resampling from the selected ensemble of configura-

tions: A random sample of N configurations is selected from the ensemble (allowing the same

configuration to be chosen more than once, so as not to simply end up with the original ensem-

ble) and the expectation value of the observable is calculated for this new sample. This process

of resampling is then repeated many times, and the standard deviation of the measurement for

each of these gives an estimate of the error in the original measurement. Explicitly, if we have

N configurations in the selected ensemble K then a measurement of the expectation value of an

observable O is calculated as

〈O〉 =
1

N

∑
U∈K

O[U ]. (4.9)

Then we take R samples, Kr, of randomly chosen combinations, with repetition, of configurations

U ∈ K, and calculate the expectation value of O for this sample

〈O〉r =
1

N

∑
U∈Kr

O[U ] (4.10)
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(note that this sum includes the same term multiple times for configurations that have been selected

more than once). We then calculate the error in 〈O〉, σO, as the standard deviation of 〈O〉r,

σO =

√√√√ 1

R

R∑
r=1

(〈O〉r − µO)
2
, (4.11)

where µO is the mean of 〈O〉r, or simply 〈O〉 as this is the value towards which the mean will tend

for large R.

4.2.2 Reweighting of Samples

The Metropolis algorithm provides an efficient way to calculate quantities for a given action, but it

is often desirable to calculate these quantities for a range of values for the non-dynamical parameters

in the action, such as β and λ in the action (3.69). Alternative algorithms to the Metropolis

algorithm are available to do this in an efficient way, such as the multicanonical method [22] which

picks configurations according to the inverse density of states rather than their weights. This allows

the same ensemble of configurations to be used in calculating quantities with different values of the

parameters in the action, but also requires knowing, or computing, the density of states. However,

the results of a Metropolis Monte Carlo run for an action with some fixed parameters can actually

be used to provide estimates for the action with different values of those parameters [23]. This

is known as reweighting and yields reasonable estimates provided that the configurations which

contribute most to the partition function with the original set of parameters is not drastically

different to the set of configurations that contribute most with the new parameters. This is due to

the efficiency of the algorithm coming from its ability to quickly select those configurations that

contribute the most and makes the method most useful when only making relatively small changes

to the parameters, for example when searching for the exact critical value for a parameter at a

phase transition.

To see how the method works, we will assume we are working with the action (3.69), but the idea

generalises to any number of non-dynamical parameters in the action. To simplify notation we will
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also define

P =
∑
µ<ν

∑
x

θµν,x (4.12)

M =
∑
µ

∑
x

Mµ,x, (4.13)

so that the action for a specific choice of β and λ becomes Sβ,λ(P,M) = βP +λM . In the original

run, configurations were selected from the probability distribution

Pβ,λ(P,M) =
1

Zβ,λ
e−Sβ,λ(P,M) =

1

Zβ,λ
e−βP−λM , (4.14)

where Zβ,λ =
∑
P,M Pβ,λ(P,M) ensures that the distribution is normalised. The probability dis-

tribution for different values of β′ and λ′, Pβ′,λ′(P,M), can then be written in terms of Pβ,λ(P,M)

as

Pβ′,λ′(P,M) =
1

Zβ′,λ′
e−Sβ′,λ′ (P,M)

=
1

Zβ′,λ′
e−β

′P−λ′M

=
Zβ,λ
Zβ′,λ′

Pβ,λ(P,M)e(β−β
′)P+(λ−λ′)M .

(4.15)

By requiring that the distribution is normalised, we can see that

Zβ,λ
Zβ′,λ′

=
∑
P,M

Pβ,λ(P,M)e(β−β
′)P+(λ−λ′)M . (4.16)

The expectation value of an observable, for given β and λ is given by

〈O〉β,λ =
∑
P,M

O(P,M)Pβ,λ(P,M) (4.17)

and in our original run the N configurations in the ensemble, having values Pn and Mn, have been

selected according to Pβ,λ(P,M), so that the observable is estimated by taking the mean

〈O〉β,λ =
1

N

N∑
n=1

O(Pn,Mn). (4.18)
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Using Equation (4.15) we can therefore estimate the observable for the action with parameters β′

and λ′ with the reweighted mean

〈O〉β′,λ′ =
1

Z

N∑
n=1

O(Pn,Mn)e(β−β
′)P+(λ−λ′)M , (4.19)

where here Z =
∑N
n=1 e

(β−β′)Pn+(λ−λ′)Mn is the normalisation factor (4.16).

The general form of this, for an action Sβr [U ] for configurations U and set of non-dynamical

parameters βr used in the action for the original run, is given by

〈O〉β′
r

=
1

Z

N∑
n=1

O[Un]eSβr [Un]−Sβ′r [Un] (4.20)

Z =

N∑
n=1

eSβr [Un]−Sβ′r [Un]. (4.21)

To combine several Monte-Carlo runs at different values of the non-dynamical parameters, each

run can be used to produce an estimate for the new parameter values, and these can be combined

as a weighted mean, with the weight given by
1

σ2
i

, where σi is an estimate of the error on the result

from run i. A more optimised but slightly more complex procedure for combining multiple runs

at different parameter values is given in [24].

4.3 Simulating the Compact U(1) Lattice Gauge Theory

4.3.1 Metropolis Procedure for Compact U(1)

The Metropolis algorithm described above can be applied to the compact U(1) lattice gauge theory

of Section 3.5 by updating each link θµ,x at for each µ and x individually, with the proposed new

value for the parameter chosen at random from the uniform distribution on [−π, π]. Alternatively,

θµ,x can be updated by shifting its value by an amount chosen from the uniform distribution on

[−a, a], where a < π is adjusted to optimise the process - smaller values of a generally result

in a higher acceptance probability, but result in an increased autocorrelation between iterations.

In each “sweep” of the lattice, every link is updated in a separate Metropolis step, and this is

completed in a “checkerboard” fashion, as shown for two dimensions in Figure 3, first updating all

the even links and then all the odd links.
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Figure 3: Even (blue) and odd (red) links are updated alternately.

When updating each link variable θµ,x, the probability of acceptance involves the value of the

action for the old and new values of θµ,x, but rather than recalculating the entire action at each

step, it is enough to simply calculate the change to the action due to the link being updated.

For the action (3.47), with the link in the µ̂ direction, we first have the contribution from the

six plaquettes surrounding the link - two plaquettes for each of the three axes orthogonal to µ̂

(one plaquette in each of the positive and negative directions along the axis). Secondly there are

twelve cubes surrounding the link corresponding to the contributions to the monopole term - four

cubes for each pair of the three axes orthogonal to µ̂ (one cube for each combination of positive

and negative directions along these axes). These are shown in Figure 4 for a 3-dimensional lattice,

where there are four plaquettes (one for each of the two axes orthogonal to µ̂) and four cubes (since

there is only one pair of axes orthogonal to µ̂).

4.3.2 Boundary Conditions

In order to perform calculations using a finite lattice of length L on each side, suitable boundary

conditions need to be imposed. The simplest choice, which preserves the spacetime symmetries of

an infinite lattice, is periodic boundary conditions. This effectively embeds the lattice on a 4-torus,
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Figure 4: Four cubes, with four plaquettes (blue), surrounding the updated link (red).

and are defined by the effect on the link variables

θµ,x+Lν̂ = θµ,x. (4.22)

However, with these boundary conditions, the total monopole flux through the 3-d hypersurface in

the lattice taken by summing over three of the four dimensions, and hence also the total magnetic

charge in the lattice, will equal zero

∑
xµ,xν ,xσ

Mρ,x = 0. (4.23)

This is clear to see from the definition of Mρ, given in Equation (3.67), as when summing over the

three dimensions orthogonal to the monopole flux each plaquette included in the first term will be

cancelled from the same plaquette being included in the second term.

An alternative set of boundary conditions, which do allow non-zero total flux, are antiperiodic

boundary conditions

θµ,x+Lk̂ = −θµ,x. (4.24)

where k̂ is a spatial direction, and we retain periodic boundary conditions in the time direction.

These boundary conditions are equivalent to charge conjugation and so are also known as C-periodic

boundary conditions. This also means that while they appear to break translation invariance, the

charge conjugation symmetry of the theory prevents this from being the case. The total flux given

in Equation (4.23) can now be non-zero since the terms at the boundary no longer cancel due to

the changed sign in the first term when the boundary is crossed. However, when summing over all
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dimensions it is again found that they cancel. To avoid this we can introduce twisted boundary

conditions.

Like C-periodic boundary conditions, twisted boundary conditions do not break any symmetries of

the theory as they are equivalent to a gauge transformation. The idea is that a gauge transformation

is applied at the spatial boundaries which modifies the monopole flux which does not cancel so

that there is an overall magnetic charge in the lattice. Again periodic boundary conditions are still

used for the time direction. By redefining the variables via the appropriate gauge transformation,

the introduced flux can be spread homogeneously across the lattice so that it does not break

translation invariance. This technique has been used in a number of studies of monopoles in

lattice gauge theories, for example for SU(2) in [25]. For compact U(1) the technique was used

in [26], where the twist was applied to a “stack” of plaquettes in one spatial dimension, and the

twist could be chosen to introduce an arbitrary flux, θ3 → θ3 + φ. The twist was also applied

in combination with antiperiodic boundaries, applied to one stack in each of the three spatial

dimensions, preserving rotational symmetry, and with the flux introduced by the twist required to

be equal to π, so that the quantisation of the monopole flux is preserved. This is implemented by

using the boundary conditions on the links

θ1(t, 0, y +N, z) =π − θ1(t, 0, y, z)

θ2(t, x, 0, z +N) =π − θ2(t, x, 0, z)

θ3(t, x+N, y, 0) =π − θ3(t, x, y, 0),

(4.25)

with antiperiodic boundary conditions for the remaining points on the spatial boundaries, and

periodic boundary conditions at the time boundary. For these boundary conditions to be consistent,

the flux applied at the twist must be a multiple of π. Figure 5 shows the links and plaquettes where

the twist is applied. With the twisted boundary conditions there will now be an overall magnetic

charge in the system and so the properties of the monopole can be more easily investigated, as we

will see in Chapter 5.

4.3.3 Critical Slowing Down and the Dynamical Parameter Method

One issue that can occur with the Metropolis algorithm with these local updates is that if there are

multiple local minima in the action then it is possible for the algorithm to get stuck around that
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z

x

y

Figure 5: Plaquettes (blue) and links (red) where the twisted boundary conditions are applied.

minimum, taking some time to “tunnel” out into another minimum; this is known as critical slowing

down. One way to solve the problem of critical slowing down is to use a non-local update, such as in

the multi-grid method [27] where, in addition to local updates of the individual variables, updates

on multiple points are proposed simultaneously. Another alternative is to use the multicanonical

method mentioned in Section 4.2.2 since this picks configurations in a way unaffected by the energy

profile. For our purposes however, the Metropolis algorithm with local updates will suffice, except

for one modification used to avoid critical slowing down in the specific theory that we are studying.

The dynamical parameter method [28] for solving this problem was introduced to avoid critical

slowing down close to the phase transition in the compact U(1) lattice gauge theory with monopole

term. Around the phase transition the two phases coexist but with an energy barrier preventing the

Metropolis algorithm from tunnelling between them, particularly for negative λ where the strength

of the first order transition is stronger. For larger (positive) values of λ the transition eventually

becomes of second order and the issue of tunnelling through an energy barrier is removed. This
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can be taken advantage of in calculations by allowing λ to become a dynamical parameter of the

Metropolis algorithm. For the negative values of λ an easier route becomes available for tunnelling

from configurations in one phase to those in another by going via the values of λ where there is no

large energy barrier preventing the transition.

With λ fixed, we have the probability distribution

Pλ(U) =
1

Zλ
e−Sλ(U) (4.26)

and with λ a dynamical parameter, we require that the probability at any given value of λ takes

the same form. This means that the joint probability distribution for λ and U must take the form

P (U, λ) = f(λ)Pλ(U), (4.27)

where f(λ) will be made approximately constant to ensure that each value of λ is equally likely.

We then define the new joint action S(U, λ)

S(U, λ) = Sλ(U) + g(λ), (4.28)

where

g(λ) = −log
(
f(λ)

Z

Zλ

)
, (4.29)

so that the joint probability distribution has the form

P (U, λ) =
1

Z
e−S(U,λ). (4.30)

Then, after updating each of the link variables in the Metropolis algorithm in the usual way,

one additional Metropolis step is completed to update the value of λ, which can take one of n

fixed values, λq, ordered such that λq+1 > λq. The proposed value λq′ is chosen using the proposal

matrix
1

2
(δq+1,q′ +δq,q′+1+δq,1δq′,1+δq,nδq′,n), which is then accepted according to the probability

min(1, eS(U,λq)−S(U,λq′ )) so that the probability of transitioning from λq to λq′ is given by

P (U, q → q′) =
1

2
min(1, eS(U,λq)−S(U,λq′ )). (4.31)
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For each value of λ, values of β(λ) and g(λ) are required. For the largest value of λ, λ1, the value

of g(λ1) can be chosen arbitrarily, since it is only the differences g(λq+1)− g(λq) that matter, and

β(λ1) should be chosen such that the two phases coexist and the tunnelling time between them is

reasonably short. This can be done using short Metropolis runs at fixed λ and β. The values of

g(λq) are determined by the requirement for f(λq) ≈ const.; this implies that g(λq) ≈ lnZλq+const.

which can be estimated from short runs at fixed λ followed by iteratively improving the values

by making the replacement g(λq) → g(λq) + ln(f(λq)). Alternatively, when searching for the

critical value, βc(λ), of the phase transition the values for both β(λq) and g(λq) can be efficiently

determined simultaneously using an iterative process, allowing longer runs using the dynamical

parameter method to then be completed for the precise value of βc(λ) to be determined using the

reweighting procedure described in Section 4.2.2. Starting from λ1, with β(λ1) already determined

and g(λ1) arbitrarily set to 0, the values of βλq and g(λq) are determined in sequence from βλq−1

and g(λq−1). Equation (4.31) and detailed balance imply that

f(λq−1)Pq−1(U)P (U, q − 1→ q) = f(λq)Pq(U)P (U, q → q − 1). (4.32)

If we then consider subsets K(q) of configurations U with the weight

wK(q) =
∑

U∈K(q)

Pλq (U), (4.33)

then the average transition probability for the set is given by

pK(q → q′) =
∑

U∈K(q)

Pλq (U)P (U, q → q′). (4.34)

Equation (4.32) then implies that, for the set K(q),

f(λq−1)wK(q − 1)pK(q − 1→ q) = f(λq)wK(q)pK(q → q − 1). (4.35)

The two subsets that we are interested in are the set of configurations in the “hot” condensate

phase, Kc and the set of configurations in the “cold” Coulomb phase, Kh. These sets can be

considered to be approximately independent, with vanishing probability of transitions between

them, precisely due to the critical slowing down that is the reason for this dynamical parameter

method. This also means that relatively short Monte–Carlo runs starting from a “cold” state with

the all link parameters initially set to zero, and a “hot” state with all link parameters set to random
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values, will select only configurations from Kc and Kh respectively. To get close to the critical

value βc(λq), the condition that the two phases are equally probable is imposed, which implies

that the weights are equally probable, wKc = wKh . Assuming that the two subsets cover the whole

set of configurations (configurations that have a very low probability can be safely ignored), the

weights will then be given by

wKc(q) = wKh(q) =
1

2
. (4.36)

Using this condition, f(λ) ≈ const., and Equation (4.35) applied to each set, we find that

pKc(q − 1→ q) =pKc(q → q − 1)

pKh(q − 1→ q) =pKh(q → q − 1).

(4.37)

An initial estimate of β(λq) can be produced either by extrapolating from values for lower λ or by

reweighting the MC run at λq−1 and searching for the value of which satisfies the condition (4.36).

Then, after a short Monte-Carlo run with this estimate at fixed λq, from hot and cold starts to

produce sets of configurations in each phase, the average transition probabilities (4.34) can be

estimated as

pKi(q → q′) ≈ 1

NKi(q)

∑
U∈Ki(q)

P (U, q → q′), (4.38)

where NKi(q) is the number of configurations in the set produced by the Monte-Carlo run. Since

this approximation depends on P (q → q′), which depends on β(λq) and g(λq), their values can

be adjusted until the conditions (4.37) are satisfied. This process can be repeated for subsequent

values of λq to obtain estimates for all β(λq) and g(λq). The dynamical parameter method can

then be used with these values and, if required, improved values of β(λq) and g(λq) obtained by

the same procedure. This procedure from [28], can actually be slightly improved by reweighting

the sets used in the approximation (4.38) when adjusting the value of β(λq), using the reweighting

procedure outlined in Section 4.2.2.
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5 Monopole Properties in Compact U(1) on the Lattice

5.1 Finding the Critical Point for the Phase Transition

The first step in investigating the properties of monopoles in the compact U(1) lattice gauge theory

is to determine the regions where the theory is confining. In our case this amounts to finding the

critical value, βc, of β for a given λ, for the phase transition between the confinement phase of

a monopole condensate and deconfined Coulomb-like phase. This was achieved using the method

outlined in Section 4.3.3, for a lattice size 84, with periodic boundary conditions. Table 1 shows

the results, and Figure 6 shows histograms of the average plaquette energy

E =
1

6L4

∑
x

∑
µ<ν

(1− cos θµν,x). (5.1)

These are both in agreement with [29] for the range λ = −0.3 − 0, with Figure 6 clearly showing

the splitting of the peaks indicating the strengthening of the first order phase transition. For more

negative values of λ this splitting of the two phases is seen to continue until around λ ∼ −1.6 where

there is evidence of a tricritical point, with a third phase consisting of monopoles throughout the

lattice at almost every lattice site. This new phase and its transition was not investigated further

since for β > βc the Coulomb phase in which we are most interested continues to exist at all values

of λ that were investigated, while for β > βc either the usual confinement phase or the new phase

is found. Figure 7 shows the three peaks appearing in the distributions of the average plaquette

energy (5.1) and monopole density

ρ =
1

4L4

∑
x

∑
µ

|Mµ,x|, (5.2)

indicating the three phases at the tricritical point.

The position of the phase transition was also found not to significantly differ when using C-periodic

or twisted boundary conditions in place of periodic boundary conditions. The above values for the

critical value of β for a given λ can therefore be used to choose an appropriate range of λ and β

when investigating the monopole properties.
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λ βc g(λ)− g(0)
0.0 1.007 0.00
−0.1 1.065 −401.71
−0.2 1.122 −780.05
−0.3 1.179 −1134.91
−0.4 1.236 −1475.51
−0.5 1.294 −1799.63
−0.6 1.352 −2110.64
−0.7 1.411 −2410.39
−0.8 1.470 −2700.35
−0.9 1.531 −2981.90
−1.0 1.592 −3255.56
−1.2 1.718 −3782.52
−1.4 1.849 −4287.37

Table 1: Critical value βc for the phase transition and value of g(λ) used for the simulations at λ
on an L = 8 lattice.
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Figure 6: Distributions of the plaquette energy E for values of λ from -1.8 to 0 on a lattice of size
L = 8.

5.2 The Monopole Mass

The mass of the monopole is an important property to measure; in the compact U(1) theory with

no monopole term the mass is generally large and increases with the lattice size. In order to

investigate the properties of monopoles that could correspond to the type of monopole potentially

observable in experiments, it is necessary to reduce study a theory on the lattice where the mass

is reduced. It is hoped that the addition of the monopole term with a negative value of λ will

achieve this. A number of techniques have been used by other groups for measuring the mass

of the monopole in compact U(1) lattice theory. The mass has been measured using monopole

correlation functions formed from a monopole-antimonopole creation operator [30] and in the dual

Z lattice gauge theory of compact U(1) [31]. In our case, two methods of measuring the mass have
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Figure 7: Distributions near the tricritical point λ = −1.6, β = 1.99 for lattice with L = 8, (a) for
the average plaquette energy E and (b) for the average monopole density ρ.

been used both of which have been successfully used in other systems, for example in measuring

the mass of the ’t Hooft-Polyakov monopole in the lattice theory of the Georgi-Glashow SU(2)

model [32].

5.2.1 Measuring the Mass Using the Free Energy

The twisted and C-periodic boundary described in Section 4.3.2 fix the total magnetic charge in

the system to odd or even respectively. In the Coulomb phase the monopoles are expected, for a

large enough lattice, not to interact. This allows us to determine the monopole mass, M . The

partition function (3.49) for the system with n net units of magnetic charge, Zn is related to that

with no net magnetic charge, Z0, in the Coulomb phase by [32]

Zn = Z0e
−|n|MT , (5.3)
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where T is the length of the time dimension of the lattice. The mass is then given by

M = − 1

T
ln
Z1

Z0
=

1

T
(F1 − F0), (5.4)

where F1 and F0 are the free energies for the systems with one net unit of magnetic charge and no

net magnetic charge respectively, using the definition of the free energy F = − lnZ. The C-periodic

boundary conditions have an even overall magnetic flux and so with higher values of n suppressed,

the partition function will take the form ZCP = Z0. Likewise for twisted boundary conditions,

with an odd net charge, the partition function will take the form ZT = 2Z1 = 2Z0e
−MT , and so

these two partition functions, or the two corresponding free energies, could be used to find the

monopole mass. Using Monte-Carlo calculations, however, the free energy is not a quantity that

can be measured. We need to find a quantity in the form of a measurable observable (3.50). The

derivative of the free energy with respect to some parameter x of the action has exactly this form,

since

∂F

∂x
=

∂

∂x
(− lnZ)

= − 1

Z

∂

∂x
Z

= − 1

Z

∂

∂x

∫
dU e−S[U ]

=
1

Z

∫
dU

∂S

∂x
e−S[U ]

=

〈
∂S

∂x

〉
.

(5.5)

The derivative of the mass with respect to x can therefore be measured as

∂M

∂x
=

1

T

(〈
∂S

∂x

〉
T

−
〈
∂S

∂x

〉
CP

)
, (5.6)

where 〈 · 〉T and 〈 · 〉CP refer to the expectation values measured in lattices with twisted and C-

periodic boundary conditions respectively. If we take x to be λ of the action (3.69), this tells us

how the mass scales with λ.

∂M

∂λ
=

1

T

(〈
∂S

∂λ

〉
T

−
〈
∂S

∂λ

〉
CP

)
. (5.7)
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Then, if the mass is known at some value λ0 of λ, we can perform an integration from that point

to determine the value of the mass at another value, λ1,

M(λ1) = M(λ0) +

∫ λ1

λ0

dλ
1

T

(〈
∂S

∂λ

〉
T

−
〈
∂S

∂λ

〉
CP

)
. (5.8)

5.2.2 Measuring the Mass Using Correlation Functions

The second method for measuring the mass is using correlation functions. This has the advantage

that it does not require performing the numerical integration needed when using the free energy

difference, and so is less computationally intensive, requiring only computing results at the values

of λ at which the mass is desired. For a two-point correlation function, if we insert a complete

set of energy eigenstates
∑
α |α〉 〈α| satisfying Ĥ |α〉 = Eα |α〉, and take the fourier transform, we

obtain

C(k, t) = 〈0| O(k, 0)O(k, t) |0〉

=
∑
α

∑
x

∑
y

〈0| O(x, 0)eik·x |α〉 〈α| e−ik·yO(y, t) |0〉 e−Eαt.
(5.9)

where the discrete Fourier transform corresponds to a sum over the lattice points, rather than the

usual integral of continuous Fourier transforms (note also that this is the form after having per-

formed the Wick rotation to imaginary time). Due to the exponential factor e−Eαt, this correlation

function can be approximated by only taking the contribution from the lowest energy state.

The most obvious correlator to use would be the monopole correlator, where O = Mµ. In the

Coulomb phase, assuming that the lowest energy state is non-relativistic, we would have

C(k, t) ∼ e− k2

2M t, (5.10)

where k = |k| is the magnitude of the lowest possible momentum and M is the monopole mass.

On the lattice, with periodic boundary conditions, the allowed momenta in a given direction are

quantised as ki =
2πn

L
, for n ∈ Z, since the length of the lattice must be an integer number

of wavelengths. For anti-periodic (or twisted) boundary conditions, if O is even under charge

conjugation, the allowed momenta are ki =
(2n− 1)π

L
since now there must be a half integer

number of wavelengths along the length of the lattice; for even functions the allowed momenta are

the same as for periodic boundary conditions. However, it is difficult to measure this correlator;
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due to the discrete nature and small values of Mµ, long runs of the Monte-Carlo procedure would

be required to reduce the errors to an acceptable level.

Alternatively we can use a plaquette correlator where O = θ̄µν , or O = sin θµν , either of which has

the continuum limit C(k, t) = 〈0|FµνFρσ |0〉. For periodic or anti-periodic boundary conditions,

we have

C(k, t)P,CP = 〈sin θµν sin θρσ〉P,CP ∼ e−kt. (5.11)

However with twisted boundary conditions introducing a monopole into system, the lowest energy

contribution to the correlator is now expected to be from coupling to the monopole, in which case

we again have

C(k, t)T = 〈sin θµν sin θρσ〉T ∼ e
− k2

2M t. (5.12)

This suggests that measuring this correlation function on a lattice with twisted boundary conditions

will allow us to determine the monopole mass.

5.2.3 Numerical Results for the Monopole Mass

Values for
dM

dλ
were calculated using the difference in the derivative of the free energy for twisted

and C-periodic boundary conditions (5.7), for values of λ ranging from -1 to 0 with β = 1.6, where

the system is in the Coulomb phase, for lattices of size L = 8 and L = 12. 200,000 Metropolis

sweeps were performed at L = 8 and 150,000 sweeps at L = 12. These results are shown in

Figure 8. As can be seen, the mass does decrease as λ is decreased, as expected. As the system

gets closer to the transition from the Coulomb phase to the confinement phase, where we expect

the monopole mass to vanish, the derivative of the mass increases faster than exponentially. This

would suggest that for a given value of β, it should indeed be possible to reduce the monopole

mass as desired by including the monopole term in the action with a negative value of λ.

Calculations using the plaquette correlation function (5.12) were performed for the same Monte-

Carlo runs as above, using the minimum momentum k = (k, k, k), k =
π

L
. In order to take into

account the periodicity of the lattice in the time direction, the correlation functions are fitted to

C(k, t) + C(k, T − t) ∼


e−kt + e−k(t−T ), C-periodic boundaries

e−
k2

2M t + e−
k2

2M (t−T ), twisted boundaries

. (5.13)
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Figure 8: Values for dM
dλ calculated using the difference between the derivative of the free energy

with respect to λ for twisted and C-periodic boundary conditions. The solid line and squares
represent the lattice size L = 8 while dashed line and crosses, represent L = 12.
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Figure 9: Preliminary results for M calculated using the plaquette correlation function for twisted
boundary conditions. The solid line and squares represent the lattice size L = 8 while dashed line
and crosses, represent L = 12.
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With C-periodic boundary conditions, there was good agreement with the expected form, and the

fitted value of k matched k =
π

L
within the statistical errors. With twisted boundary conditions,

the mass does scale in roughly the expected manner, however the overall normalisation appears to

be incorrect. This is expected to be due to an error in the calculation algorithm and it is hoped

that corrected results will agree with the results from using the free energy method. Figure 9 shows

the preliminary results obtained so far.
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6 Conclusion

As has been shown, magnetic monopoles, despite there being so far no experimental evidence for

their existence, have a number of theoretical motivations that suggest that they do exist but have

simply not yet been observed. For a start their existence would introduce an electric-magnetic

duality, making the unification of the electric and magnetic forces more elegant and natural. In

addition their introduction would require the electric (and magnetic) charge to be quantised - an

effect that has been observed in all known particles. It even seems likely that any theory which

truly explains the quantisation of the electric charge will contain monopoles. Most strikingly,

however, is that all Grand Unified Theories - theories that attempt to combine electromagnetism

with the weak and strong nuclear forces into a single unified quantum field theory - are guaranteed

to predict the existence of monopoles, and this is also true for theories of everything which include

gravity in addition to the other forces. We therefore have strong reasons to believe that studying

these particles could lead to insights that improve our understanding of the laws of Nature.

As we have seen, the concept of a lattice gauge theory provides a framework with many advantages

over other methods for investigating the quantum field theories that describe the world. The

discretisation of spacetime provides a cut-off which regularises the theory, and using the tools

available from statistical mechanics, efficient computations can be performed to calculate physical

quantities. Unlike perturbative methods, lattice field theory can be used in the strong-coupling

regime and for investigating states which are not simple perturbations of the vacuum state due

their topology. This all makes lattice field theory a clear choice for investigating the properties of

monopoles.

The compact U(1) lattice gauge theory - the lattice version of pure gauge quantum electrodynamics

- contains magnetic monopoles of finite mass. As expected, in the continuum limit this mass tends

towards infinity, however with the addition of a new term in the action which is proportional to

the number of monopoles, with a negative coefficient, can counteract the diverging monopole mass

as the continuum limit is taken. This could allow the properties of magnetic monopoles to be

studied on a simple system that is still physically relevant. The results given here, although only

preliminary in some respects, have demonstrated that the mass can indeed be controlled by the

choice of the coefficient of this additional term.
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There are many aspects of this investigation that could warrant further research. The use of the

correlation functions in measuring the mass does not yet appear to fully agree with measurements

using free energy differences. If the reason for this could be found then it would allow similar

calculations to be used in investigating other properties of the monopoles such as whether they act

as point particles and how they interact with other particles. So far the mass of the monopole has

only been studied at one value of the coupling β, and on relatively small lattices and short Monte-

Carlo runs. It would be valuable to investigate the effect of the additional term in the action on

monopoles for a range of values of β, and using a range of lattice sizes with longer calculation run

times would show if and how the effect changes as the continuum limit is approached, in addition

to giving more precise results. Such investigations into monopoles in the compact U(1) lattice

gauge theory could prove to be experimentally relevant in searches for physical monopoles, making

them worthwhile endeavours beyond just theoretical interest.
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